

Factors Contributing to Use of Excessive Reverse Thrust

Human Performance
Group Chairman's presentation

EPR Exceedances During Landing Rollout

Habit Pattern

- Most landings on dry runways
- EPR target for dry runways higher than that for contaminated runways
- Stressful, high-workload situations can prompt reversion to well-learned behaviors
- Captain could have reverted to larger, more habitual input

Situational Stress

- Factors present
 - Snowier-than-expected runway
 - Short runway length
 - Nonstandard runway safety area
 - Water at end of runway
- Contributed to aggressive initial control input

Selective Attention

Cognitive Limitations

- Human vulnerabilities in selective attention
 - Attentional capture
 - Fixation
- Operational distractions during landing
 - Slide to left
 - Concern about autospoilers
 - Loss of directional control

Exceedances of EPR Targets

- Sample of 80 Delta MD-88 landings
 - 1.6 EPR exceeded 44% of time
- 14 landings with precipitation on runways that were potentially contaminated
 - 1.3 EPR exceeded 100% of time
 - 1.6 EPR exceeded 57% of time

Possible Explanations for Exceedances of EPR Targets

- Pilot decision-making
 - Concerns about stopping versus possibility of losing directional control
- Pilot perceptual and cognitive limitations
 - Selective attention and competing task demands

Strategies for Reducing EPR Exceedances

- Implementing best operating practices
- Improving human performance through design considerations

| National Transportation Safety Board